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Abstract.1

Recent research on Emergent Constraints (EC) has delivered promising results. The method utilizes a measurable variable2

(predictor) from the recent historical past to obtain a constrained estimate of change in a difficult-to-measure variable (pre-3

dictand) at a potential future CO2 concentration (forcing) from multi-model projections. This procedure critically depends4

on, first, accurate estimation of the predictor from observations and models, and second, on a robust relationship between5

inter-model variations in the predictor-predictand space. We investigate issues related to these two themes in this article, using6

vegetation greening sensitivity to CO2 forcing during the satellite era as a predictor of change in Gross Primary Productivity7

(GPP) of the Northern High Latitudes region (60◦ N – 90◦ N, NHL) for a doubling of pre-industrial CO2 concentration in the8

atmosphere. Greening sensitivity is defined as changes in annual maximum of green leaf area index (LAImax) per unit CO29

forcing realized through its radiative and fertilization effects. We first address the question of how to realistically characterize10

the greening sensitivity of a large area, the NHL, from pixel-level LAImax data. This requires an investigation into uncertain-11

ties in LAImax data source and an evaluation of the spatial and temporal variability in greening sensitivity to forcing in both12

the data and model simulations. Second, the relationship between greening sensitivity and ∆GPP across the model ensemble13

depends on a strong coupling among simultaneous changes in GPP and LAImax. This coupling depends in a complex manner14

on the magnitude (level), time-rate of application (scenarios) and effects (radiative and/or fertilization) of CO2 forcing. We15

investigate how each one of these three aspects of forcing can impair the EC estimate of the predictand (∆GPP). Accounting16

for uncertainties in greening sensitivity and stability of the relation between inter-model variations results in a quantitative17

estimate of the uncertainty (± 0.2 Pg C yr−1) on constrained GPP enhancement (∆GPP = +3.4 Pg C yr−1) for a doubling18

of pre-industrial atmospheric CO2 concentration in NHL. This ∆GPP is 60% larger than the conventionally used average of19

model projections. The illustrated sources of uncertainty and limitations of the EC method go beyond carbon cycle research20

and are generally relevant for Earth system sciences.21

Copyright statement.22
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1 Introduction1

Earth system models (ESMs) are powerful tools to predict response to a variety of forcings such as increasing atmospheric2

concentration of greenhouse gases and other agents of radiative forcing (Klein and Hall, 2015). Still, longterm ESM projections3

of climate change can have substantial uncertainties. This can be due to poorly understood processes in some cases, and in4

others, to missing or simplified representations called parameterizations (Flato et al., 2013; Klein and Hall, 2015; Knutti et al.,5

2017). Certain important processes, especially in the atmosphere, happen at spatial scales finer than can be possibly represented6

in current ESMs. Consequently, certain key aspects of the system, such as variability, extreme precipitation events and large-7

scale climate modes, can be poorly simulated (Flato et al., 2013). Errors propagate and can be amplified through feedbacks8

among interacting components in the Earth system, resulting in biases whose origins can be difficult to identify (Flato et al.,9

2013). Furthermore, an inherent component of the Earth climatic system, its internal natural variability, is complicated to10

represent and simulate in models (Flato et al., 2013; Klein and Hall, 2015).11

Model Intercomparison Projects aim is to explore these uncertainties by coordinating a wide range of simulation setups12

focusing on internal variability, boundary conditions, parameterizations, etc. (Taylor et al., 2012; Eyring et al., 2016; Flato13

et al., 2013; Knutti et al., 2017). Models developed at various institutions are driven with the same forcing information (e.g.14

historical forcing) or with identical idealized boundary conditions. However, each modeling group decides which of the pro-15

cesses to consider and implement in their ESM. The conventional approach of handling these multi-model ensembles is to use16

unweighted ensemble averages (Knutti, 2010; Knutti et al., 2017). This assumes that the models are independent of one another17

and equally good at simulating the climate system (Flato et al., 2013; Knutti et al., 2017). The large spread between model18

projections suggests that this assumption is not valid. Therefore, alternate methods have been developed to extract results more19

accurate than multi-model averages (e.g., model weighting scheme based on preformance and interdependence, Knutti et al.,20

2017). The concept of Emergent Constraints arises in this context, namely, a method to reduce uncertainty in ESM projections21

relying on historical simulations and observations (Hall and Qu, 2006; Boé et al., 2009; Cox et al., 2013; Klein and Hall, 2015;22

Cox et al., 2018).23

The two key parts of an Emergent Constraint (EC) based method are a linear relationship arising from the collective behavior24

of a multi-model ensemble and an observational estimate for imposing the said constraint (Fig. 1). The linear relationship is a25

physically (or physiologically) based correlation between inter-model variations in an observable entity of the contemporary26

climate system (predictor) and a projected variable (predictand) that is usually difficult to observe. Combining the emergent27

linear relationship with observations of the predictor sets a constraint on the predictand (Knutti et al., 2017; Klein and Hall,28

2015; Cox et al., 2013; Flato et al., 2013). Many such ECs have been identified and reported, as briefly summarized below.29

Hall and Qu (2006) proposed a constraint on projections of snow-albedo feedback based on the correlation between large30

inter-model variations in feedback strength of the current seasonal cycle. The EC was first established for the CMIP3 ensemble31

and confirmed for phase five of the Coupled Model Intercomparison Project (CMIP5) (Qu and Hall, 2014; Flato et al., 2013).32

Several EC studies followed with the goal of reducing uncertainty in projections of the cloud feedback under global warming,33

as reviewed by Klein and Hall (2015). It is thought that erroneous representation of low-cloud feedback in ESMs contributes34
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essentially to the large uncertainty in equilibrium climate sensitivity (ECS, 1.5 to 5 K), i.e. warming for a doubling of pre-1

industrial atmospheric CO2 concentration (2×CO2) (Klein and Hall, 2015; Sherwood et al., 2014). Recently, Cox et al. (2018)2

presented a different approach to constrain ECS based on its relationship to variability of global temperatures during the recent3

historical warming period. They report a constrained ECS estimate of 2.8 K for 2×CO2 (66% confidence limits of 2.2 – 3.44

K).5

The concept of EC also found its way into the field of carbon cycle projections. A series of studies analyzed the extent6

to which inter-annual atmospheric CO2 variability can serve as a predictor of longterm temperature sensitivity of terrestrial7

tropical carbon storage. Cox et al. (2013) and Wenzel et al. (2014) reported an emergent linear relationship, although with8

different slopes for CMIP3 and CMIP5 ensembles, resulting in slightly divergent constrained estimates (CMIP3: -53 ± 179

Pg C K−1, CMIP5: -44 ± 14 Pg C K−1). Wang et al. (2014) however were unable to detect a similar relationship between10

the proposed predictor and predictand. Recently, Lian et al. (2018) presented an EC estimate of the global ratio of transpiration11

to total terrestrial evapotranspiration (T/ET), which is substantially higher (0.62 ± 0.06) than the unconstrained value (0.41 ±12

0.11). For the marine tropical carbon cycle, Kwiatkowski et al. (2017) identified an emergent relationship between the longterm13

sensitivity of tropical ocean net primary production (NPP) to rising sea surface temperature (SST) in the equatorial zone and14

the interannual sensitivity of NPP to El Niño/Southern Oscillation driven SST anomalies. Tropical NPP is projected to decrease15

by 3 ± 1% for 1 K increase in equatorial SST according to the observational constraint.16

Similar results were reported for extra-tropical terrestrial carbon fixation in a 2×CO2 world. Plant productivity is expected17

to increase due to the fertilizing and radiative effects of rising atmospheric CO2 concentration. Wenzel et al. (2016) focused18

on constraining the CO2 fertilization effect on plant productivity in the northern high latitudes (60◦ N – 90◦ N, NHL) and19

the entire extra-tropical area in the northern hemisphere (30◦ N – 90◦ N) using the seasonal amplitude of longterm CO220

measurements at different latitudes. They presented a linear relationship between the sensitivity of CO2 amplitude to rising21

atmospheric CO2 concentration and the relative increase in zonally averaged gross primary production (GPP) for 2×CO2. The22

observed CO2 amplitude sensitivities at respective stations provided a constraint on the strength of the CO2 fertilization effect,23

namely 37% ± 9% and 32% ± 9% for the NHL and the extra-tropical region, respectively.24

Focusing on the NHL, Winkler et al. (2018) investigated how both effects of CO2 enhance plant productivity while assess-25

ing the feasibility of vegetation greenness changes as a constraint (Fig. 1). Enhanced GPP due to the physiological effect and26

ensuing climate warming is indirectly evident in large-scale increase in summer time green leaf area (Myneni et al., 1997; Zhu27

et al., 2016). Historical CMIP5 simulations show that the maximum annual leaf area index (LAImax, leaf area per ground area)28

increases linearly with both CO2 concentration and growing degree days (above 0◦C, GDD0) in NHL. To avoid redundancy29

from co-linearity between the two driver variables, but retain their underlying time-trend and interannual variability, the dom-30

inant mode from a principal component analysis of CO2 and GDD0 was used as the proxy driver (denoted ω). This greening31

sensitivity (i.e.
∆LAImax

∆ω
) can be inferred for the overlapping historical period from simulations and observations alike. In all32

ESMs, changes in GPP arising from the combined radiative and physiological effects of CO2 enrichment strongly correlate33

with changes in LAImax in the historical simulations. Thus, the large variation in modelled historical LAImax sensitivities lin-34

early maps to variation in ∆GPP at 2×CO2. Hence, this linear relationship in inter-model variation between ∆GPP at 2×CO235
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and historical greening sensitivities allows using the observed sensitivity as an EC on ∆GPP at 2×CO2 in NHL (3.4 ± 0.21

Pg C yr−1, Winkler et al., 2018).2

The EC method (Fig. 1) has its limitations. For example, Cox et al. (2013), Wang et al. (2014) and Wenzel et al. (2015)3

investigated on constraining future terrestrial tropical carbon storage using the same set of models and data. However, they4

arrived at different EC estimates and divergent conclusions. Some reasons for the failure and essential criteria required for5

successful application of the EC approach were described previously (Bracegirdle and Stephenson, 2012b; Klein and Hall,6

2015), but this list is far from complete. The main focus thus far has been on caveats establishing an emergent linear relationship7

in a multi-model ensemble. However, large uncertainty on the constraint could result potentially from how the observational8

predictor is derived and compared to the modeled estimates. Here, we revisit the study of Winkler et al. (2018) and elaborate9

on key issues concerning sources of uncertainty regarding the constraint and applicability of the EC method.10

Uncertainty on the constrained estimate depends on (a) observed predictor and (b) modeled relationship, aside from the11

goodness-of-fit of the latter (green shading in Fig. 1). As for (a), the source of observations is an obvious first line of inquiry12

(Sect. 3.1). Spatial aggregation of data and model simulations introduces uncertainties, as the EC method is applied on large13

areal values of predictor and predictand. This is the subject of Sect. 3.2. The observed and modeled predictors are from the14

historical period. The representativeness, duration and match between data and models all introduce an uncertainty related15

to variations in the temporal domain – these are explored in (Sect. 3.3). The yellow shading in Fig. 1 represents the total16

uncertainty on observed predictor from these three fronts. Regarding (b), the modeled linear relation varies (grey shading in17

Fig. 1) depending on three attributes of the forcing, i.e. CO2 concentration change, its magnitude, rate and effect (Sect. 3.4 and18

3.5). Lessons learned from analyses along these lines are presented in the conclusion section at the end.19
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2 Data and Methods1

2.1 Observational data sets2

2.1.1 Remotely sensed leaf area index3

We used the recently updated version (V1) of the leaf area index data set (LAI3g) developed by (Zhu et al., 2013). It was gen-4

erated using an artificial neural network (ANN) and the latest version (third generation) of the Global Inventory Modeling and5

Mapping Studies group (GIMMS) Advanced Very High Resolution Radiometer (AVHRR) normalized difference vegetation6

index (NDVI) data (NDVI3g). The latter have been corrected for sensor degradation, inter-sensor differences, cloud cover, ob-7

servational geometry effects due to satellite drift, Rayleigh scattering and stratospheric volcanic aerosols (Pinzon and Tucker,8

2014). This data set provides global and year-round LAI observations at 15-day (bi-monthly) temporal resolution and 1/129

degree spatial resolution from July 1981 to December 2016. Currently, this is the only available record of such length.10

The quality of previous version (V0) of LAI3g data set was evaluated through direct comparisons with ground measurements11

of LAI and indirectly with other satellite-data based LAI products, and also through statistical analysis with climatic variables,12

such as temperature and precipitation variability (Zhu et al., 2013). The LAI3gV0 data set (and related fraction vegetation-13

absorbed photosynthetically active radiation data set) has been widely used in various studies (Anav et al., 2013; Forkel et al.,14

2016; Zhu et al., 2016; Mao et al., 2016; Mahowald et al., 2016; Piao et al., 2014; Poulter et al., 2014; Keenan et al., 2016).15

The new version, LAI3gV1, used in our study is an update of that earlier version.16

We also utilized a more reliable but shorter data set from the Moderate Resolution Imaging Spectroradiometer (MODIS)17

aboard the NASA’s Terra satellite (Yan et al., 2016a, b). These data are well calibrated, cloud-screened and corrected for18

atmospheric effects, especially tropospheric aerosols. The sensor-platform is regularly adjusted to maintain a precise orbit. All19

algorithms, including the LAI algorithm, are physics-based, well-tested and currently producing sixth generation data sets.20

The data set provides global and year-round LAI observations at 16-day (bi-monthly) temporal resolution and 0.05◦ spatial21

resolution from 2000 to 2016.22

Leaf area index is defined as the one-sided green leaf area per unit ground area in broadleaf canopies and as one-half the23

green needle surface area in needleleaf canopies in both observational and CMIP5 simulation data sets. It is expressed in units24

of m2 green leaf area per m2 ground area. Leaf area changes can be represented either by changes in annual maximum LAI25

(LAImax) (Cook and Pau, 2013), or growing season average LAI. In this study, we use the former because of its ease and26

unambiguity, as the latter requires quantifying the start- and end-dates of the growing season, something that is difficult to do27

accurately in NHL (Park et al., 2016) with the low resolution model data. Further, LAImax, is less influenced by cloudiness and28

noise; accordingly, it is most useful in investigations of long-term greening and browning trends. The drawback of LAImax, is29

the saturation effect at high LAI values (Myneni et al., 2002). However, this is less of a problem in high latitudinal ecosystems30

which are less-densely vegetated, with LAImax, values typically in the range of 2 to 3.31

The bi-monthly satellite data sets were merged to a monthly temporal resolution by averaging the two composites in the32

same month and bi-linearly remapped to the resolution of the applied reanalysis product (0.5◦×0.5◦, CRU TS4.01).33
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2.1.2 Environmental driver variables1

We use temperature, precipitation and CO2 data to derive the observed historical forcing (Sect. 2.3) and to calculate climatic2

regimes (Fig. 2). Monthly averages of near-surface air temperature and precipitation are from the latest version of the Cli-3

matic Research Unit Timeseries data set (CRU TS4.01). The global data are gridded to 0.5◦×0.5◦ resolution (Harris et al.,4

2013). Global monthly means of atmospheric CO2 concentration are from the GLOBALVIEW-CO2 product (obspack_co2_1_5

GLOBALVIEWplus_v2.1_2016_09_02; for details see http://dx.doi.org/10.15138/G3259Z) provided by the National Oceanic6

and Atmospheric Administration / Earth System Research Laboratory (NOAA / ESRL).7

2.2 Earth system model simulations8

We analyzed recent climate-carbon simulations of seven ESMs participating in the fifth phase of the Coupled Model Intercom-9

parison Project, CMIP (Taylor et al., 2012). The model simulated data were obtained from the Earth System Grid Federation,10

ESGF (https://esgf-data.dkrz.de/projects/esgf-dkrz/). Seven ESMs provide output for the variables of interest (GPP, CO2,11

LAI, and near-surface air temperature) for simulations titled esmHistorical, RCP4.5, RCP8.5, 1pctCO2, esmFixClim1, and12

esmFdbk1. It is the same set of models analyzed in Wenzel et al. (2016) and Winkler et al. (2018).13

The esmHistorical simulation spanned the period 1850 to 2005 and was driven by observed conditions such as solar forcing,14

emissions or concentrations of short-lived species and natural and anthropogenic aerosols or their precursors, land use, anthro-15

pogenic as well as volcanic influences on atmospheric composition. The models are forced by prescribed anthropogenic CO216

emissions, rather than atmospheric CO2 concentrations.17

Several Representative Concentration Pathways (RCPs) have been formulated describing different trajectories of greenhouse18

gas emissions, air pollutant production and land use changes for the 21st century. These scenarios have been designed based on19

projections of human population growth, technological advancement and societal responses (Vuuren et al., 2011; Taylor et al.,20

2012). We analyzed simulations forced with specified concentrations of a high emissions scenario (RCP8.5) and a medium21

mitigation scenario (RCP4.5) reaching a radiative forcing level of 8.5 and 4.5 W m−2 at the end of the century, respectively.22

These simulations were initialized with the final state of the historical runs and spanned the period 2006 to 2100.23

1pctCO2 is an idealized fully coupled carbon-climate simulation initialized from a steady state of the preindustrial control24

run and atmospheric CO2 concentration prescribed to increase 1% yr−1 until quadrupling of the preindustrial level. The25

simulations esmFixClim and esmFdbk are set up similar to the 1pctCO2 with the difference, that in esmFixClim (esmFdbk)26

only the radiative effect from increasing CO2 concentration is included, while the carbon cycle sees the preindustrial CO227

level (vice versa) (Taylor et al., 2009, 2012; Arora et al., 2013).28

2.3 Estimation of greening sensitivities29

We largely follow the methodology detailed in Winkler et al. (2018). For both model and observational data, the two-dimensional30

global fields of LAI and the driver variables are cropped according to different classification schemes (namely, vegetation31

classes (Olson et al., 2001), climatic regimes, and latitudinal bands). The aggregated values are area-weighted, averaged in32
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space, and temporally reduced to annual estimates dependent on the variable: annual maximum LAI, annual average atmo-1

spheric CO2 concentration, and growing degree days (GDD0, yearly accumulated temperature of days where near-surface air2

temperature > 0◦ C).3

We use a standard linear regression model to derive the greening sensitivity. On a global scale, LAImax is assumed to4

be a linear function of atmospheric CO2 concentration. For the temperature-limited high northern latitudes, we also have to5

account for warming and include temperature as an additional driver. We do this using GDD0. We derive the dominant mode6

(denoted ω) through a principal component analysis of CO2 and GDD0 to avoid redundancy from co-linearity between the7

two driver variables, but retain their underlying time-trend and interannual variability. Thus, NHL LAImax is formulated as a8

linear function of the proxy driver time series ω. The best-fit gradients and associated standard errors of the linear regression9

model represent the LAImax sensitivities, or greening sensitivities, and their uncertainty estimates, respectively. For variations10

of finer spatial scale, the greening sensitivity is similarly calculated at the pixel scale.11
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3 Results and Discussion1

There are two parts to the EC methodology (Fig. 1) – a statistically robust relationship between modeled matching pairs of2

predictor-predictand values and an observed value of the predictor. The predictors are from a representative historical period.3

The predictands are modeled changes in a variable of interest at a potential future state of the system, typically one that is diffi-4

cult to measure. The projection of the observed predictor on the modeled relation yields a constrained value of the predictand.5

A causal basis has to buttress the predictor-predictand relationship, else the EC method may be spurious. For example, mean-6

ingful coupling between concurrent changes in GPP and LAImax with increasing atmospheric CO2 concentration underpins7

our specific case study, i.e. some of the enhanced GPP due to rising CO2 concentration is invested in additional green leaves8

by the plants (Winkler et al., 2018). This assures an approximately constant ratio of predictand to predictor across the models9

within the ensemble, thus setting up the potential for deriving an EC estimate.10

Uncertainty on the constrained estimate depends on the observed predictor and modeled relationship, aside from the goodness-11

of-fit of the latter (Fig. 1). These are detailed below.12

3.1 Uncertainty in Observed Sensitivity Due to Data Source13

We investigate this using LAI data from two different sources, AVHRR (1/12 degree) and MODIS (1/20 degree), and spatially14

aggregating these by broad vegetation classes, latitudinal bands and climatic regimes. The observed large-area sensitivities are15

always positive, irrespective of the source data and the method of aggregation (Fig. 2, Tab. 1). This indicates a net increase in16

green leaf area across the NHL during the observational period, as reported previously (Myneni et al., 1997; Zhu et al., 2016;17

Forkel et al., 2016). Overall, MODIS based estimates have higher uncertainty because of the shorter length of the data record18

(17 years). The failure to reliably estimate sensivities in tropical forests (also in the latitudinal band 30◦ S – 30◦ N, and in hot,19

wet and humid climatic regimes, see Tab. 1) is due to saturation of optical remote sensing data over dense vegetation (LAImax20

> 5) and problems associated with high aerosol content and ubiquitous cloudiness. In general, the estimated sensitivities are21

comparable across sensors and aggregation schemes (e.g. for latitudinal band > 60◦ N/S, AVHRR: (3.4 ± 0.5) × 10−3;22

MODIS: (3.6 ± 0.9) × 10−3; LAImax ppm−1 CO2). However, there are three interesting exceptions. First, higher sensitivities23

are seen in croplands, which reflect management effects (fertilizer application, irrigation etc.) in addition to CO2 effects (Fig.24

2a, Tab. 1). Second, lower sensitivities are seen in sparsely vegetated areas and biomes (low LAImax, ∼ 1) which are due to25

nutritionally poor soils and / or inhospitable climatic conditions. Third, similarly low sensitivities are seen in dry regimes where26

precipitation is limiting and in humid regimes where temperature is limiting (Fig. 2c, Tab. 1).27

This analysis illustrates the applicability and limitations of using observed greening sensitivities to CO2 forcing as a con-28

straint on photosynthetic production. For example, data from both AVHRR and MODIS sensors provide a comparable estimate29

of greening sensitivity in the colder high latitudes (boreal forests and tundra vegetation classes) where precipitation is generally30

less than 1000 mm (Winkler et al., 2018). However, the remote sensing LAI data are not suitable for similar studies in areas31

dominated by croplands and in the tropics for reasons stated above.32
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3.2 Uncertainty in Sensitivities Due to Spatial Aggregation1

We focus further analyses on the NHL region (> 60◦ N; Fig. 2b) only because data from both AVHRR and MODIS sensors yield2

comparable spatially-aggregated greening sensitivities in this region unlike elsewhere, as discussed in Sect. 3.1. In addition3

to the physiological effect of CO2, also warming plays a key role in controlling plant productivity of these temperature-4

limited ecosystems, and thus, vegetation greenness. To avoid redundancy from co-linearity between CO2 and GDD0, we5

reduce dimensionality by performing a principal component analysis of the two driver variables (Sect. 2.3). The resulting first6

principal component explains most of the variance and retains the trend and year-to-year fluctuations in both CO2 and GDD0.7

Therefore, we obtain a proxy driver (hereafter denoted ω) that represents the overall forcing signal causing observed vegetation8

greenness changes in NHL. Accordingly, greening sensitivity for the entire NHL area is derived as response to ω, the combined9

forcing signal of rising CO2 and warming. This procedure also enables a better comparability between observations and models10

because varying strengths of physiological and radiative effects of CO2 among models are taken into account (Sect. 3.3 – 3.5).11

The vegetated landscape in the NHL region is heterogeneous, with boreal forests in the south, vast tundra grasslands to the12

north and shrublands in-between. The species within each of these broad vegetation classes respond differently to changes in13

key environmental factors. Even within a species, such responses might vary due to different boundary conditions, such as14

topography, soil fertility, micrometeorological conditions, etc. How this fine scale variation in greening sensitivity impacts the15

aggregated value is assessed below.16

The distribution of greening sensitivities from all pixels is slightly skewed towards the positive (blue histogram). The mean17

value of this distribution (blue dashed line) is comparable to the sensitivity estimate derived from the spatially-averaged NHL18

time series (yellow dashed line; Fig. 3). Based on the Mann-Kendall test (p > 0.1), nearly over half the pixels (54%) show pos-19

itive statistically significant trends (greening), while about 10% show browning trends (possibly due to disturbances, Goetz20

et al., 2005). The distribution of these statistically significant sensitivities (red histogram) therefore has two modes, a weak21

browning and a dominant greening mode, resulting in a substantially higher mean value (red dashed line) in comparison to the22

spatially-averaged estimate (yellow dashed line; Fig. 3). Thus, by taking into account the remaining 36% of non-significantly23

changing pixels (as in the NHL spatially-averaged estimate), an additional source of uncertainty is introduced. The mean sen-24

sitivity value is, of course, higher when only pixels showing a greening trend are considered in the analysis (green dashed line;25

Fig. 3). These are the only areas in NHL that actually show a large increase in plant productivity and consequently significant26

changes in leaf area. ESMs reveal similar pixel-level variation in both LAImax sensitivity and associated changes in GPP in27

the NHL (Anav et al., 2013, 2015), although ESMs operate on much coarser resolution. Due to the coupling of the predictor28

and predictand, the distribution of all pixel estimates is approximately the same for the two variables. Accordingly, averaging29

the equally distributed estimates likely does not affect the predictor-predictand relationship in the model ensemble (Fig. 1).30

Consequently, if all spatial gridded data arrays are consistently processed to spatially-aggregated estimates, each predictand31

and predictor (observed and modeled) estimate contain a coherent component of spatial variations. In other words, considering32

browning and non-significant pixels results in a lower overall LAImax sensitivity in NHL, which in turn leads to a lower con-33

strained estimate of ∆GPP in NHL. This is consistent with the underlying relationship between predictor and predictand. On a34
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related note, Bracegirdle and Stephenson (2012a) suggest that this source of error is not significantly dependent on the spatial1

resolution when comparing model subsets from high to low resolution.2

The above analysis informs that spatially-averaged estimates are approximations containing a random error component3

due to inclusion of data from insignificantly changing pixels and a systematic bias component from browning pixels. This4

uncertainty is relevant to the EC method, where the observed sensitivity decisively determines the constrained estimate from5

the ensemble of ESM projections (Winkler et al., 2018; Kwiatkowski et al., 2017). However, if spatial variations are treated6

consistently as an inherent component of observations and models, the EC method is only slightly susceptible to this source of7

uncertainty.8

3.3 Uncertainty in Sensitivities Due to Temporal Variations9

We seek recourse to longterm CMIP5 ESM simulations covering the historical period 1850 to 2005 (Sect. 2.2) to assess10

temporal variation in the predictor variable, because of the shortness of observational record. Three representative models11

(CESM1-BGC, MIROC-ESM, and HadGEM2-ES) spanning a broad range of NHL greening sensitivity in the CMIP5 ensemble12

(Winkler et al., 2018) are selected for this analysis. For each model, LAImax sensitivity to ω in moving windows of different13

lengths (15, 30, and 45 years; Fig. 4) are evaluated. The analysis reveals two crucial aspects that highlight how temporal14

variations impair comparability of the predictor variable between models and observations – an essential component of the EC15

approach.16

First, window locations of modeled and observed predictor variable have to match. If the forcing in the simulations is17

low, for example, as in the second half of the 19th century when CO2 concentration was increasing slowly, inter-annual18

variability dominates and LAImax sensitivity cannot be accurately estimated irrespective of the window length (Fig. 4). With19

increasing forcing over time (rising yearly rate of CO2 infusion, and consequently, the concentration), the signal-to-noise20

ratio increases and LAImax sensitivity to ω estimation stabilizes, for example, as in the second half of the 20th century.21

Therefore, LAImax sensitivities estimated at different temporal locations result in non-comparable values and eventually a22

false constrained estimate (details in Sect. 3.4). As an example, modeled sensitivities based on a 30-year window centered on23

year 1900, when CO2 level increased by 10 ppm, with observed sensitivity estimated from a 30-year window centered on year24

2000, when CO2 level increased by 55 ppm, describe different states of the system and therefore should not be used in the EC25

method.26

Second, in addition to temporal location, window lengths have to match between observations and models. For all three27

models, sensitivities estimated from 15-year chunks show high variability and thus, a 15-year record is perhaps too short28

to obtain robust estimates. The LAImax sensitivity estimation becomes more stable with strengthening forcing and increasing29

window length (Fig. 4). As a consequence, using short-term observed sensitivity as a constraint on long-term model projections30

results in an incorrect EC estimate. Hence, the MODIS sensor record is, on the one hand, too short and does not, on the other31

hand, overlap temporally with the historical CMIP5 forcing (Fig. 1). Therefore, it does not provide a correct observational32

constraint.33
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3.4 Level and Time Rate of CO2 Forcing1

The EC method raises an obvious question – does it not implicitly assume that the key operative mechanisms underpinning the2

EC relation remain unchanged because a future system state is being predicted based on its past behavior? To be specific, we3

are attempting to predict GPP at a future point in time based on greening sensitivity inferred from the past. Does this not require4

the assumption that the key underlying relationship which makes this prediction possible, namely, a robust coupling between5

contemporaneous changes in GPP and LAImax remains unchanged from the past to the future? To address this question, we6

resort to the CMIP5 idealized simulation (1pctCO2), where atmospheric CO2 concentration increases 1% annually, starting7

from a preindustrial level of 284 ppm until a quadruple of this value is reached (Sect. 2.2). We limit the analysis to the three8

models (CESM1-BGC, MIROC-ESM, and HadGEM2-ES) which bracket the full range of GPP enhancement and LAImax9

sensitivity in the original seven ESM ensemble (Winkler et al., 2018).10

The relationship between simultaneous changes in GPP and LAImax remains linear for all CMIP5 models in the range11

1×CO2 to 2×CO2 (Fig. 5, Tab. 2). With concentration increasing beyond 2×CO2, all models show weakening correlation12

(R2, Tab. 2) and decreasing slope (b, Tab. 2) of this relationship (Fig. 5), suggesting a saturating rate of allocation of additional13

GPP to new leaves at higher levels of CO2. Consequently, LAImax sensitivity to increasing CO2 and associated warming14

decreases. At and over 4×CO2 (1140 ppm), a level unlikely to be seen in the near future, there appears to be no relationship15

between ∆GPP and ∆LAImax. This raises the question as to what extent does the weakening of relationship between the16

predictor and predictand (Fig. 1) at higher CO2 concentration affects the EC analysis. To shed light on this matter, we perform17

the following Gedankenexperiment.18

Understanding the relationship and interplay between forcing (increasing CO2 concentration), predictor (LAImax sensitiv-19

ity), and the predictand (∆GPP) is key to evaluating the EC method. We conceive four possible scenarios of how the system20

might behave with increasing forcing. For simplicity, we assume linearly increasing CO2 concentration, use LAI instead of21

LAImax, and GPP refers to its annual value below (Fig. 6). The four scenarios are: All linear, all non-linear (saturation), and22

two mixed linear / non-linear cases (Tab. A1). We emulate a multi-model ensemble by applying different random parame-23

terizations for the linear and saturation (the hyperbolic tangent function) responses. One of these realizations is assumed to24

represent pseudo-observations (dashed lines, Fig. 5). We discuss one case in detail for illustrative purposes (No. 3, Tab. A1).25

In scenario 3, ∆GPP increases linearly with increasing CO2 (Fig. 6a), while ∆LAI/∆GPP saturates (Fig. 6b). The LAI26

sensitivity to CO2 weakens with increasing forcing (Fig. 6c) as a response to saturation of GPP allocation to leaf area. We27

derive LAI sensitivities to CO2 for three different periods (’past periods’ in Fig. 6c) to constrain ∆GPP at a much higher28

CO2 level (’projected period’ in Fig. 6a). Next, we apply the EC method on these pseudo-projections of ∆GPP relying on29

LAI sensitivities derived from the three past periods (Fig. 6d). The EC method is applicable even at a low forcing level (past30

period 1) in this simplified scenario because we neglect stochastic internal variability of the system. The slope of emergent31

linear relationship increases (Fig. 6d) as modeled LAI sensitivities decrease with rising CO2 concentration (Fig. 6c). The32

observational constraint on future ∆GPP, however, remains nearly the same, because pseudo-observed LAI sensitivity also33

weakens at higher CO2 levels (dashed lines, Fig. 6c, d). Thus, the three EC estimates of ∆GPP are approximately identical34
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(Fig. 6d) and independent of the forcing level during past periods. With intensified forcing, the relationship between predictor1

and predictand remains linear within the model ensemble, although their relationship becomes non-linear within each model2

and, crucially, in reality as well. In other words, as long as the models agree on the occurrence and "timing" of saturation,3

changes in predictor and predictand relate linearly within the model ensemble. The same behavior is also seen in the other4

three scenarios (Tab. A1; Fig. A1, A2).5

Nevertheless, with ever increasing forcing and associated steepening of the emergent linear relationship, the LAI sensitivity6

loses its explanatory power at some point because the linear relationship eventually lies within the observational uncertainty7

and no meaningful constraint can be derived. This and disagreement between models on system dynamics are ultimate limits8

of the EC method. Interestingly, we find that all CMIP5 models agree on saturation, but slightly disagree on the timing of9

saturation. Further, we find that the ’all non-linear’ scenario best describes the dynamics of the system in the forcing range10

from 1×CO2 to 4×CO2. However, the saturation of LAI to GPP happens at a lower CO2 level than saturation of GPP to CO211

(Fig. A2). Still, inferences from interpretation of Case 3 (Fig. 6) are equally applicable.12

Results from the above Gedankenexperiment also highlight the importance of matching window locations and lengths be-13

tween models and observations, as discussed earlier (Sect. 3.3). For instance, taking LAI sensitivity from past period 2 (green14

dashed line, Fig. 6d) as an observational constraint on the multi-model linear relationship based on past period 3 (red solid line,15

Fig. 6d), results in a significant overestimation of constrained ∆GPP (intersection of the two lines, Fig. 6d).16

The above analysis informs that the constrained GPP estimate at one future period is nearly independent of the past periods17

from when the observational sensitivities are derived, for most realistic scenarios. Now, we evaluate the EC method where18

sensitivity from one past period is used to obtain constrained GPP estimates at different periods in the future, i.e. progressively19

farther down the time-line. We utilize the greening sensitivity derived from observed LAImax data and apply the EC method to20

CMIP5 1pctCO2 simulations. The sensitivities in this case are due to forcing from both CO2 increase and associated warming21

during the observational period (Sect. 2.3). We seek constrained GPP estimates at future CO2 levels (2×CO2, 3×CO2, and22

4×CO2).23

Winkler et al. (2018) previously reported a strong linear relationship between modeled contemporaneous changes in LAImax24

and GPP arising from the combined radiative and physiological effects of CO2 enrichment until 2×CO2 in the CMIP5 ensem-25

ble (Fig. 5). As a result, models with low LAImax sensitivity project lower ∆GPP for a given increment of CO2 concentration,26

and vice versa. Thus, the large variation in modeled historical LAImax sensitivities linearly maps to variation in ∆GPP at27

2×CO2 (Winkler et al., 2018; blue line, Fig. 7a). At higher levels, such as 3×CO2 (green line, R2 = 0.93) and 4×CO2 (red28

line, R2 = 0.88), this linear relationship within the model ensemble, while still present, weakens (Fig. 7a; Tab. 3). This is29

because the CMIP5 models do not agree on the timing and magnitude of the saturation effect at higher CO2 levels (Fig. 7a).30

The increment in constrained GPP estimates for successive equal increments of CO2 decreases due to the saturation effect in31

all CMIP5 models (dashed horizontal lines, Fig. 7a). For example, the change in GPP between 3×CO2 and 4×CO2 (∆GPP32

∼1.06 Pg C yr−1, Tab. 3) is much lower than between 2×CO2 and 3×CO2 (∆GPP ∼2.34 Pg C yr−1, Tab. 3).33

We have thus far focused on the magnitude of CO2 concentration change and not on the time rate of this change. For34

example, a given amount of change in CO2 concentration, say 200 ppm, can be realized over different time periods, say over35
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a 100 or 150 years. The problem of varying rates of CO2 concentration change is implicitly encountered when ESMs are1

executed under different forcing scenarios, such as RCPs. A question then arises whether the constrained GPP estimate is2

independent of the time rate of CO2 concentration change and dependent only on the magnitude of CO2 concentration change.3

To investigate this aspect of forcing, we extract GPP estimates at the same CO2 concentration (535 ppm; final concentration4

in RCP4.5) from three simulations of different forcing rates and calculate the difference relative to a common initial CO25

concentration (380 ppm; initial concentration of RCP scenarios). Hence, the magnitude of the forcing is the same but applied6

over different durations (RCP4.5: ∼90yr, RCP8.5: ∼45yr, and 1pctCO2: ∼30yr). A clear majority of the CMIP5 models show7

substantial differences in ∆GPP between the different pathways of CO2 forcing. In general, GPP changes are higher for lower8

time rates of CO2 forcing, i.e. forcing over longer time periods. As a consequence, the EC estimates of ∆GPP for the same9

increase in CO2 concentration are scenario-dependent (Fig. 7b; Tab. 3) – a counter-intuitive result. For instance, ∆GPP in the10

low-CO2-rate scenario (RCP4.5: ∆GPP ∼2.84 Pg C yr−1, Tab. 3) is ∼39% (1pctCO2: ∆GPP ∼2.05 Pg C yr−1, Tab. 3) and11

∼20% (RCP8.5: ∆GPP ∼2.38 Pg C yr−1, Tab. 3) higher than the high-CO2-rate scenarios for an increase of 155 ppm CO2.12

This analysis suggests that the vegetation response to rising CO2 is pathway dependent, at least in the NHL. One of the reasons13

for this could be species compositional changes in scenarios of low forcing rates, i.e. over longer time frames. This novel result,14

however, requires a separate in-depth study.15

3.5 Effects of CO2 Forcing16

Higher concentration of CO2 in the atmosphere stimulates plant productivity through the fertilization and radiative effects17

(Nemani et al., 2003; Leakey et al., 2009; Arora et al., 2011; Goll et al., 2017). The two effects can be disentangled in18

the model world by conducting simulations in a ’CO2 fertilization effect only’ (esmFixClim1) and a ’radiative effect only’19

(esmFdbk1) setup (Sect. 2.2). These are termed below as idealized model simulations. We investigate here whether historical20

runs and observations, which include both effects, can be used to constrain GPP changes in idealized CMIP5 simulations (e.g.21

as in Wenzel et al. (2016)).22

We find strong linear relationships between historical LAImax sensitivity and ∆GPP for 2×CO2 in both idealized setups23

(esmFixClim1: R2 = 0.92, esmFdbk1: R2 = 0.98, Tab. 3, Fig. 7c). Consequently, this linear relationship is also pronounced for24

calculated sums of both effects for each model (esmFixClim1 + esmFdbk1: R2 = 0.95, Tab. 3, Fig. 7c). This suggests that the25

two effects act additively on plant productivity and, thus, each effect can be simply expressed in terms of a scaling factor of26

the total GPP enhancement. Hence, the application of the EC method on idealized simulations using real world observations is27

conceptually feasible.28

Interestingly, the two effects contribute about the same to the general increase in GPP at 2×CO2 (esmFixClim1: ∆GPP29

∼1.35 Pg C yr−1, esmFdbk1: ∆GPP ∼1.38 Pg C yr−1, Tab. 3, Fig. 7c). At higher concentrations, such as 3×CO2 and30

4×CO2, the enhancement in GPP saturates in both idealized setups. However, the radiative effect becomes dominant relative to31

the CO2 fertilization effect when CO2 concentration exceeds 2×CO2 (e.g. at 4×CO2 esmFixClim1: ∆GPP∼2.42 Pg C yr−1,32

esmFdbk1: ∆GPP ∼3.06 Pg C yr−1, Tab. 3). Therefore, we can expect that at some point in the future, NHL photosynthetic33

carbon fixation will benefit more from climate change (e.g. warming) than from the fertilizing effect of CO2.34
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3.6 Uncertainties in the multi-model ensemble1

Besides methodological sources of uncertainty discussed above, the estimate of an EC may also be deficient due to inaccurate2

assumptions about the model ensemble. First, possible common systematic errors in a multi-model ensemble (i.e. the entire3

ensemble misses an unknown but for the future essential process) are implicitly omitted in the EC approach, however, could4

cause a general over- or underestimation of the constrained value (Bracegirdle and Stephenson, 2012b; Stephenson et al., 2012).5

Second, the set of forcing variables for historical simulations may be incomplete (i.e. not yet identified drivers of observed6

changes) and, thus, the comparability of observations and model simulations is limited (Flato et al., 2013). Third, the EC method7

can be overly sensitive to individual models of the ensemble, which has a bearing on the robustness of the constrained value8

(Bracegirdle and Stephenson, 2012b). Bracegirdle and Stephenson (2012b) proposed a diagnostic metric (Cook’s distance)9

to test an ensemble for influential models. Fourth, the assumption behind the predictand-predictor relationship has to rely10

on a logical connection within the model ensemble, meaning that the analyzed characteristic of the predictor variable (e.g.11

sensitivity to the forcing, or historical relative/absolute changes) is causally linked to changes in the predictand variable. For12

instance, Wenzel et al. (2016) reported a linear relationship between relative changes in GPP for doubling of CO2, so changes13

relative to the preindustrial state, and historical sensitivity of CO2 amplitude to rising CO2, so neglecting the initial state. This14

statistical relationship can be spurious, because the model skill of simulating an accurate initial state and a plausible sensitivity15

to a forcing are not connected.16

These issues are to be contemplated when establishing an EC estimate and evaluating its robustness.17
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4 Conclusions1

An in-depth analysis of the EC method is illustrated in this article through its application to projections of change in NHL2

photosynthesis under conditions of rising atmospheric CO2 concentration. Key conclusions highlighting the functionality of3

the EC method are presented below.4

The importance of how the observational predictor is obtained cannot be emphasized enough because it essentially defines5

the constrained estimate. Thus, considerable care is required when selecting and processing the observational datasets. The6

LAI data products of both AVHRR and MODIS sensors provide comparable estimates of greening sensitivity in the colder7

northern high latitudes (i.e. boreal forests and tundra vegetation classes). In these ecosystems, factors associated with GPP8

enhancement from CO2 forcing and consequent investment in leaf area dominate. This is not the case in croplands and tropical9

areas. Therefore, the use of greening sensitivity as an observational constraint is not feasible in regions where croplands and/or10

tropical vegetation dominate.11

Spatially aggregating observations and model output of different resolutions in the EC method is another source of un-12

certainty. Regional estimates of greening sensitivity are approximations of complex fine-scale processes. Aggregation will13

inevitably introduce a random error component due to inclusion of data from areas where LAI is not changing and a system-14

atic bias from areas where LAI is decreasing (browning). The spatially-aggregated greening sensitivity is meaningful only if15

most of the region is greening in response to CO2 forcing. However, as long as spatial variations in observations and models16

simulations are treated consistently, this source of uncertainty is likely of minor importance.17

A large source of uncertainty is associated with temporal variability of the predictor variable throughout the historical period.18

The evaluation of greening sensitivity requires temporal window lengths of sufficient duration, approximately 30 years, and19

location along the forcing time line. And, these should match between models and observations. For example, the analysis20

in Wenzel et al. (2016) might have yielded different results and conclusions if model and observational predictor sensitivities21

were temporally matched. The relevance of window length decreases with increasing and accelerating forcing, depending on22

the magnitude of natural/internal variability (signal-to-noise ratio) of the predictor variable.23

The level, effect and duration of CO2 forcing have a bearing on the linear relationship between GPP enhancement and24

predictor sensitivities (Fig. 1). For example, the relationship underpinning the EC method, namely, that between concurrent25

∆GPP and ∆LAImax, changes with increasing forcing level (CO2 concentration). This relation breaks down at very high26

CO2 concentrations at which point the EC method fails. The two dominant effects of rising CO2 concentration on vegetation,27

namely, the fertilization and radiative effects, appear to be approximately additive in terms of GPP enhancement to CO228

forcing. Therefore, the EC method can be applied to constrain estimates of GPP due to one or the other, or both the effects.29

The models, however, document a higher radiative effect than fertilization at high CO2 concentrations, i.e. 3×CO2 and higher.30

An intriguing conclusion from our analysis is that the time-rate of forcing has an effect on GPP changes, that is, the projected31

GPP enhancement to CO2 forcing seems to be dependent on how the forcing is applied over time, as in different scenarios or32

RCPs. This aspect is presently not well understood and requires further study.33
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The analyses and inferences presented in this article lead to the following concrete result. The uncertainty on EC estimate of1

GPP enhancement in NHL (∆GPP = +3.4 Pg C yr−1) for a doubling of pre-industrial atmospheric CO2 concentration is ± 0.22

Pg C yr−1 (Winkler et al., 2018). This EC estimate is 60% larger than the conventionally used average of model projections3

(44% higher at the global scale), leading Winkler et al. (2018) to conclude that most CMIP5 models included in their analysis4

were largely underestimating photosynthetic production.5

In this article, we scrutinized potential sources of uncertainty and limitations of the applicability of the EC method. Our6

findings are illustrated by means of a case study in carbon cycle research, however, are generally relevant and applicable in7

Earth system sciences.8
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Figure 1. Schematic depiction of the Emergent Constraint (EC) method and factors affecting the uncertainty of the constrained estimate.

The predictor (x axis) is change in annual maximum of green leaf area index (LAImax) due to unit forcing (CO2 increase and associated

climatic changes) during a representative historical period. It is termed greening sensitivity in this study. The predictand (y axis) is projected

changes in Gross Primary Productivity (GPP) in response to rising CO2 concentration (e.g. for a doubling of the pre-industrial level). Both

the predictor and predictand refer to large area values, in this case, the entire Norther High Latitudes (NHL). Inter-model variations (each

symbol represents a model) in matching pairs of predictor and predictand result in a linear relationship between the two (green band), i.e. the

ratio (predictand/predictor) is approximately constant across the model ensemble. The slope depends on forcing attributes (gray shading),

such as its level (CO2 concentration, Sect. 3.4), time rate of application (scenarios such as various RCPs, Sect. 3.4) and different effects

(i.e. fertilization, radiative, etc., Sect. 3.5). The observed sensitivity (yellow vertical bar) is used to find the constrained estimate of the

predictand (i.e. change in GPP). The ability to accurately estimate the predictor depends on the source of observational data (Sect. 3.1), and

its spatial (Sect. 3.2) and temporal variability (Sect. 3.3). Observed (yellow bar) and modeled predictor values (x coordinate of symbols) must

be obtained from matching time periods, i.e. at the same level of historical forcing, to ensure comparability (Sect. 3.4). All these factors,

together with the goodness-of-fit of inter-model variations (width of green shading), finally define the uncertainty of the derived constrained

estimate (blue horizontal bar with black solid lines depicting the upper and lower bound of uncertainty).
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Figure 2. Bar charts showing regression slopes of LAImax against atmospheric CO2 concentration for broad vegetation classes (a, Olson

et al. (2001), latitudinal bands (b) and climate regimes (c). The class "Other" includes deserts, mangroves, barren and urban land, snow

and ice, and permanent wetlands. The climatic boundaries are defined as follows - cold: < 10◦ C; warm: > 10◦ C & < 25◦C; hot: > 25◦

C; dry: < 500 mm a−1; wet: > 500 mm a−1 & < 1000 mm a−1; humid: > 1000 mm a−1. Sensitivities evaluated from data from two

satellite-borne sensors are shown, AVHRR (1982 – 2016, Pinzon and Tucker (2014)) and MODIS (2000 – 2016, Yan et al. (2016a, b)). Grey

bars indicate the standard error of the best linear fit.
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Figure 3. Histograms and associated probability density functions (Gaussian kernel density estimation) of observed LAImax sensitivity to

ω at pixel scale for the northern high latitudinal band (> 60◦ N, data from AVHRR sensor). Blue color depicts the distribution of LAImax

sensitivities of all pixels and the red color for pixels with statistically significant (Mann-Kendall test, p < 0.1) greening or browning trends

(the dashed lines denote the respective mean value). The green dashed line shows the mean value of ’greening’ pixels only, whereas the

yellow dashed line shows the LAImax sensitivity to ω for the entire northern high latitudinal belt.
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Figure 4. Temporal variation of LAImax sensitivity to ω in three selected CMIP5 models spanning the full range from low (CESM1-BGC,

a), to closest-to-observations (MIROC-ESM, b), to high-end (HadGEM2-ES, c). The colored lines show LAImax sensitivity variations for

moving windows of varying length of 15 (blue), 30 (green), and 45 (red) years over the historical period from 1860 to 2005.
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Figure 5. Correlation of ∆LAImax and ∆GPP with increasing CO2 forcing, starting from a pre-industrial concentration of 280 ppm (1xCO2)

to 4xCO2 (CMIP5 1pctCO2 simulations). Results are shown for three selected CMIP5 models spanning the full range of LAImax sensitivity

to ω, low-end: CESM1-BGC (a), closest-to-observations: MIROC-ESM (b), and high-end: HadGEM2-ES (c). Blue colored dots show the

relation between 1xCO2 and 2xCO2, green colored dots between 2xCO2 and 3xCO2, and red colored dots between 3xCO2 and 4xCO2.

The respective colored lines represent the best linear fit through those dots and the shading represents the 95% confidence interval.
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Figure 6. Gedankenexperiment to examine the applicability of Emergent Constraints analysis under the assumption of an idealized linear /

nonlinear behavior of the system (Case 3, Table A1). a, Changes in GPP relate linearly to changes in CO2 concentration. The yellow band

marks the projection period of interest, i.e. the period of CO2 concentration from x + 4∆ to x + 5∆. b, The increment in LAI with

increasing GPP is assumed to decrease with rising CO2 concentration (described by a hyperbolic tangent function). The parameterization in

the linear and nonlinear functions for pseudo observations (dashed black line) as well as models (solid grey lines) are determined randomly

for each model. c, The diagnostic variable, LAI sensitivity to CO2, is decreasing with increasing CO2 as a consequence of the nonlinear

relation between ∆GPP and ∆LAI. The colored bands indicate three ’past’ periods from x to x + ∆ (blue), x + ∆ to x + 2∆ (green),

and x + 2∆ to x + 3∆ (red). d, Linear relationships among the pseudo model ensembles (Ensemble LR, colored lines) between LAI

sensitivities to CO2 of the three past periods and ∆GPP from the projected period. Colored dots mark different models and the dashed lines

represent associated pseudo observations for the respective historical period. Yellow solid line depicts the constant Emergent Constraint on

projected ∆GPP irrespective of the past period.
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Figure 7. Linear relationships between historical sensitivity of LAImax to ω and absolute increase of GPP at different levels (a), different

time-rates (b) as well as effects of rising CO2 (c). The black solid line depicts the observational sensitivity including the standard error (grey

shading). Each CMIP5 model is represented by a distinct marker (legend at the top). The colored lines show the best linear fits including the

68% confidence interval estimated by bootstrapping across the model ensemble. The colored dashed lines indicate the derived constraints on

∆GPP. a, Absolute changes in GPP at different levels of CO2: 2×CO2 (blue), 3×CO2 (green), and 4×CO2 (red). b, Absolute changes in

GPP for rising CO2 concentration from 380 to 535 ppm at different time-rates: RCP4.5 (90 yr, blue), RCP8.5 (45 yr, green), and 1pctCO2

(30 yr, red). c, Absolute changes in GPP due to the two disentangled effects of CO2 at 2×CO2 in idealized simulations: Fertilization effect

(esmFixClim1, blue), radiative effect (esmFdbk1, green), and the sum of both effects (red).
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Table 1. Coefficients of determination (R2) of LAImax sensitivity to CO2 for different large-scale aggregated regions. Data are from two

optical remote sensors of different time length, AVHRR (1982 – 2016) and MODIS (2000 – 2016). Asterisks denote non-significant values:

** p > 0.1; * p > 0.05.

1

2

3

Correlation coefficient R2 AVHRR MODIS

Biomes

Boreal forests 0.49 0.58

Temperate forests 0.47 0.81

Tropical forests 0.41 0.06**

Graslands 0.75 0.83

Croplands 0.75 0.8

Other 0.35 0.2*

Latitudinal Bands

> 60◦ N/S 0.51 0.61

30◦ N/S – 60◦ N/S 0.67 0.83

30◦ S – 30◦ N 0.65 0.26

Climate Space

cold dry 0.29 0.27

cold wet 0.49 0.4

cold humid 0.33 0.21*

warm dry 0.33 0.36

warm wet 0.37 0.18*

warm humid 0.25 0.12**

hot dry 0.08* 0.08**

hot wet 0.15 0.00**

hot humid 0.13 0.01**
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Table 2. Slopes (b) and coefficients of determination (R2) for regression between changes of LAImax against changes in annual mean GPP

at different atmospheric CO2 levels in all available CMIP5 models (1pctCO2 simulation). Asterisks denote non-significant values: ** p >

0.1; * p > 0.05.

1

2

3

Correlation details < 2xCO2 > 2xCO2 & < 3xCO2 > 3xCO2

b R2 b R2 b R2

MIROC-ESM 0.23 0.97 0.16 0.89 0.08 0.63

CESM1-BGC 0.45 0.93 0.36 0.82 0.27 0.62

GFDL-ESM2M 0.37 0.89 0.04 0.07** 0.01 0.12**

CanESM2 0.22 0.95 0.19 0.83 0.17 0.67

HadGEM2-ES 0.13 0.99 0.08 0.96 0.06 0.78

MPI-ESM-LR 0.13 0.94 0.09 0.78 0.04 0.51

NorESM1-ME 0.26 0.94 0.2 0.77 0.09 0.27
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Table 3. Coefficients of determination (R2) of the emergent linear relationships in Figure 7 (asterisks denote non-significant values: ** p >

0.1; * p > 0.05). Emergent Constraints on ∆GPP (upper and lower bound of uncertainty in square brackets) for different atmospheric CO2

levels and fully-coupled as well as idealized setups. The rightmost column shows the increase of ∆GPP for an increment of 1×CO2. The

lowermost section compares EC estimates of ∆GPP for equivalent changes in CO2 concentration (CO2 rises from 380 to 535 ppm), but for

different time-rates.

1

2

3

4

5

R2 EC ∆GPP estimate (Pg C yr−1) EC ∆GPP for ∆1×CO2 (Pg C yr−1)

2xCO2

Fully coupled (1pctCO2) 0.96 3.36 [3.15, 3.56] –

CO2 fertilization only (esmFixClim1) 0.88 1.35 [1.29, 1.62] –

Radiative effect only (esmFdbk1) 0.94 1.38 [1.13, 1.51] –

Sum of both effects (esmFixClim1 + esmFdbk1) 0.95 2.74 [2.6, 2.9] –

3xCO2

Fully coupled (1pctCO2) 0.93 5.7 [5.26, 6.16] 2.34

CO2 fertilization only (esmFixClim1) 0.92 2.15 [2.02, 2.37] 0.79

Radiative effect only (esmFdbk1) 0.98 2.53 [2.3, 2.66] 1.15

Sum of both effects (esmFixClim1 + esmFdbk1) 0.96 4.68 [4.38, 4.97] 1.94

4xCO2

Fully coupled (1pctCO2) 0.88 6.76 [6.08, 7.53] 1.06

CO2 fertilization only (esmFixClim1) 0.88 2.42 [2.23, 2.74] 0.28

Radiative effect only (esmFdbk1) 0.97 3.06 [2.83, 3.2] 0.53

Sum of both effects (esmFixClim1 + esmFdbk1) 0.95 5.49 [5.09, 5.85] 0.81

380 – 535 ppm CO2

Slow increase in CO2 (RCP4.5) 0.93 2.84 [2.54, 3.08] -

Medium-fast increase in CO2 (RCP8.5) 0.96 2.38 [2.18, 2.55] -

Rapid increase in CO2 (1pctCO2) 0.96 2.05 [1.94, 2.16] -
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Figure A1. Gedankenexperiment to examine the applicability of the Emergent Constraints analysis assuming an idealized linear / linear

behavior of the system (Case 1, Table A1). a, Changes in GPP relate linearly to changes in CO2 concentration. The yellow band marks

the projection period of interest, i.e. the period of CO2 concentration from x + 4∆ to x + 5∆. b, Changes in LAI relate linearly to

changes in GPP. The parameterization in the linear functions for pseudo observations (dashed black line) as well as models (solid grey lines)

are determined randomly for each model. c, The diagnostic variable, LAI sensitivity to CO2, remains constant with increasing CO2 as a

consequence of the overall linear characteristics of the system. The colored bands indicate three ’past’ periods from x to x + ∆ (blue),

x + ∆ to x + 2∆ (green), and x + 2∆ to x + 3∆ (red). d, Linear relationships among the pseudo model ensembles (Ensemble LR 1-3

on top of each other, red) between LAI sensitivity to CO2 of the three past periods and ∆GPP from the projected period. Red dots mark

different models and the dashed line represents associated pseudo observations for all three historical periods. Yellow solid line depicts the

constant Emergent Constraint on projected ∆GPP irrespective of the past period .

3

4

5

6

7

8

9

10

11

12

31

Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2018-71
Manuscript under review for journal Earth Syst. Dynam.
Discussion started: 21 November 2018
c© Author(s) 2018. CC BY 4.0 License.



x x + x + 2 x + 3 x + 4 x + 5
CO2 concentration

GP
P

a
Pseudo OBS
Pseudo models
Projected period

GPP

LA
I

b

x x + x + 2 x + 3 x + 4 x + 5
CO2 concentration

LA
I s

en
sit

iv
ity

 to
 C

O 2

c
Past period 1
Past period 2
Past period 3

LAI sensitivity to CO2

GP
P

Pseudo
 OBS 1

Pseudo
 OBS 2

Pseudo
 OBS 3

d

Ensemble LR 1
Ensemble LR 2
Ensemble LR 3
EC on GPP

1

2

Figure A2. Gedankenexperiment to examine the applicability of the Emergent Constraints analysis assuming an idealized nonlinear / non-

linear behavior of the system (Case 4, Table A1). a, ∆GPP decreases with increasing CO2 concentration (described by a hyperbolic tangent

function). The yellow band marks the projected period of interest, i.e. the period of CO2 concentration from x + 4∆ to x + 5∆. b, Also

∆LAI decreases with increasing GPP (described by a hyperbolic tangent function). The parameterization in the hyperbolic tangent functions

for pseudo observations (dashed black line) as well as models (solid grey lines) are determined randomly for each model. c, The diagnostic

variable, LAI sensitivity to CO2, is decreasing with increasing CO2 as a consequence of the overall saturating characteristics of the system.

The colored bands indicate three ’past’ periods from x to x + ∆ (blue), x + ∆ to x + 2∆ (green), and x + 2∆ to x + 3∆ (red). d, Linear

relationships among the pseudo model ensembles (Ensemble LR, colored lines) between LAI sensitivity to CO2 of the three past periods

and ∆GPP from the projected period. Colored dots mark different models and the dashed lines represent associated pseudo observations for

respective historical period. Yellow solid line depicts the constant Emergent Constraint on projected ∆GPP irrespective of the past period .
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Table A1. Overview of four possible cases of interaction between forcing, non-observable and observable identified in the Gedankenexperi-

ment: All linear, all nonlinear, and two mixed cases.

1

2

Different assumptions d[non−observable]
d[forcing]

, e.g. d[GPP]
d[CO2]

d[observable]
d[non−observable]

, e.g. d[LAI]
d[GPP]

1 linear linear

2 nonlinear linear

3 linear nonlinear

4 nonlinear nonlinear

3

4
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